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Quantum spherical spin models
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A recently introduced class of quantum spherical spin models is considered in detail. Since the spherical
constraint already contains a kinetic part, the Hamiltonian need not have kinetic term. As a consequence,
situations with or without momenta in the Hamiltonian can be described, which may lead to different symmetry
classes. Two models that show this difference are analyzed. Both models are exactly solvable and their phase
diagram is analyzed. A transversal external field leads to a phase transition line that ends in a quantum critical
point. The two considered symmetries of the Hamiltonian considered give different critical phenomena in the
quantum critical region. The model with momenta is argued to be analog to the large-N limit of an SU(N)
Heisenberg ferromagnet, and the model without momenta shares the critical phenomena of an SU(N) Heisen-
berg antiferromagnet.
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I. INTRODUCTION

The classical spherical model was conceived by Kac.
ter being introduced in 1947 to Onsager’s rather intric
solution of the two-dimensional~2D! Ising model, he desired
to formulate a simpler spin model. As a first step he took
spins to be continuous Gaussian variables, nowadays c
the Gaussian model. This had unphysical behavior at
temperatures which led Kac to consider the ‘‘spheri
model.’’ The spherical model has continuous spins that
restricted by the ‘‘spherical’’ constraint( i 51

N Si
25N, which

represents the hypersphere intersecting all vertices of the
percube sustained by the Ising spins,Si561. In the end, the
spherical model is formally the same as the Ising model w
a global constraint instead of a local one: the sum of spin
constrained instead of each of them. At that time the sad
point method, needed in the solution, was not widely know
and here Berlin came in, leading the celebrated joint pu
cation on the spherical model in 1952@1#. Kac’s personal
reminiscence of this history is presented in Ref.@2#.

The spherical model for a ferromagnet has been con
ered in great detail. Actually, the paramagnetic to ferrom
netic transition is similar to an ideal Bose-Einstein cond
sation. Since the solution of the model is so simple a
explicit, the critical behavior can be solved exactly. Critic
exponents and scaling functions can be derived. In particu
the model with short range interactions exhibitsdlc52 as the
lower critical dimension; ford<2 no stable ferromagneti
phase occurs. Likewise,duc54 is the upper critical dimen
sion; ford.4 critical exponents take their mean-field value
These analytic results have been used to test approxima
and general ideas of phase transitions for a wide rang
interactions, short and long range. For a review on the c
sical spherical model see Ref.@3#.

As said, the spherical model was introduced for its ma
ematical simplicity. However, Stanley@4# proved that the
free energy of a model of arbitrary spin dimensionn, incor-
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porating thus the Ising model~for spin dimensionn51), the
x2y model ~spin dimensionn52) and Heisenberg mode
(n53), approaches that of the spherical model in the lim
of infinite spin dimensionalityn→`. Hence, it gives a geo
metrical interpretation to the spherical model. Since vario
critical properties where proven to be monotonic functions
the spin dimensionalityn, the critical properties of the
Heisenberg model appeared to be bounded on one sid
those of the Ising model and on the other by those of
spherical model.

The spherical model for antiferromagnets was thoroug
studied by Knops. The spherical constraint imposes^Si

2&
51 for ferromagnets. However, this does not work for an
ferromagnets because of the lack of translational invarian
To recover this, he added a second constraint; more ge
ally, one constraint has to be added for each translation
invariant set, which in the case of antiferromagnets me
each of the two sublattices. Knops found that the two c
straints reduce to a unique one, provided the staggered e
nal field vanishes. The fact that the spherical spins are sca
makes it impossible to define an order parameter that ca
identified with the spontaneous staggered magnetization
solve that and get the proper order parameter Knops us
vector version of the spherical model@5#. He also general-
ized Stanley’s arguments to nontranslational interactions@6#.

The spherical model has also been applied to disorde
systems. Though, in view of Knops’ finding, perhaps an
finite number of spherical constraints should be used, ty
cally no analog of the staggered external field is applied,
one may expect that all constraints collapse into a single o
Therefore spherical spin glass models may still give insi
in the physics of the problem which would be more difficu
to study, for example, with Ising spins. In the case of p
couplings the exact solution exhibits no breaking of repl
symmetry and the replica trick need not be used@7#. The
family of p-spin spin glasses (p-spin models! @8# has been
shown to exhibit one step replica symmetry breaking
studying the spherical version. For spin glasses with rand
pair and quartet interactions ($p52%1$p54%, ‘‘ p5214’’ !,
one of us showed that an exact solution exists, exposing
full replica symmetry breaking scenario. The simplicity
©2004 The American Physical Society19-1
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spherical models thus may give insight in difficult problem
for which otherwise no exact solution is available. For
early review on the use of the spherical model in disorde
systems, see Ref.@9#.

So far the discussion has been classical. The classic
can be understood in particular because the entropy dive
at low temperature as lnT, just as for a classical ideal ga
Different quantum versions of the spherical model have b
proposed. Obermair studied surface effects in phase tra

tions @10#. Identifying with a spin an operatorŜi , he postu-

lated a momentum operatorP̂ i conjugate to it,@Ŝi ,P̂ j #
5 i\d i j . To get a spin dynamics, he added a kinetic te
1
2 g( iP̂ i

2 to the Hamiltonian, but kept the constraint the sa

except for expressing it in operators asS i^Ŝi
2&5N. In this

case, the kinetic term may be understood as the kinetic
ergy of rigid rotors. The model remains exactly solvab
Many others have therefore used this quantization in
study of spin glasses@11#, systems with multispin random
interactions (p-spin glasses! @12#, or the study of quantum
phase transitions@13#.

One of us presented in 1995 a different quantum appro
to cure the low temperature behavior@14#. In a Trotter ap-
proach to the partition sum, the first step is to take as sph
cal constraint( iS i* S i5Ns̃/\2, wheres̃ is a constant tha
need not be unity, andS i is the complex parameter chara
terizing the coherent state associated with the bosonic a

hilation operatorŜ i5@Ŝi /\1 i P̂ i #/A2. Hence, in this ap-
proach the momentum appears in the constraint. Indeed,

constraint may also be written( i^Ŝi
2&1\2^P̂ i

2&52Ns̃. As a
second step, momenta dependent Hamiltonians were co

ered, by replacingJi j SiSj→Ji j Ŝ i
†Ŝ j . Later @15#, the same

formalism was applied to thep-spin glass model and wa
compared with its Ising counterpart. In spite of the simplic
of the system and its solubility, the resulting phase diagr
shows very interesting critical phenomena.

Since the momenta are present in the constraint one
also study situations where they do not appear in the Ha
tonian. Below we will consider two Hamiltonians with nea
est neighbor ferromagnetic interactions. We will see that
presence or absence of momenta can change the symm
of the action giving rise to different critical phenomena in t
quantum region. The resulting action may be invariant un
unitary transformations or under orthogonal ones, while
Obermair’s approach only the latter is possible. In the fi
section we show that one of these spherical spin models
lates to a quantum ferromagnet and the other to a quan
antiferromagnet.

The two different quantum versions of the model have

same quantization rule@Ŝi ,P̂ j #5 i\d i , j . Both of them cure
the problem of the entropy, it remains positive and, for te
perature going to zero, goes to zero as a power law. Vo
@13# following Stanley’s arguments, found that Obermai
quantization gives a free energy that is identical to the lar
n limit of the O(n) nonlinear sigma model. Therefore it de
scribes rotors instead of Heisenberg spins. Nieuwenhui
conversely, gave indications that his version had a beha
05611
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closer to Heisenberg spins, as having in the case of free s
a gap between the ground and the first excited state sca
with the field at small fields.

The aim of the present paper is to point out the differen
between these two models. We study two Hamiltonians us
Nieuwenhuizen’s spherical constraint. The first one was
troduced in Ref.@14# and we find it to be analogous to th
large-N limit of a SU(N ) Heisenberg ferromagnet. In th
second Hamiltonian studied, no momenta are present;
menta only appear in the formalism through the spher
constraint. In this case, the same critical phenomena as in
large-N limit of a SU(N ) Heisenberg antiferromagnet i
found, which can be described by an O(N ) nonlinear s
model which, in turn, is analogous to Obermair’s model.

The paper is organized as follows. In Sec. II the class
spherical model is reviewed and the way to quantize it
discussed. The differences between the two quantum sp
cal constraints are pointed out. In Sec. III, the path integ
formalism is introduced to calculate the partition function
a quantum spherical model. In Sec. IV this formalism is us
to solve the thermodynamics of a ferromagnetic quant
spherical model with nearest neighbor interaction and
critical phenomena is studied in detail. At the finite tempe
ture phase transition, the critical exponents remain the s
as the classical ones. In Sec. V a Hamiltonian with the sa
couplings but without momenta is considered. The criti
exponents are found to be the same as in Obermair’s mo
After that, in Sec. VI a generalization of the two types
Hamiltonians presented here is given and the limit of SU(N)
Heisenberg spins is argued to give the same critical beha
as this quantum version of spherical model. Finally so
conclusions are drawn.

II. CLASSICAL SPHERICAL MODEL

The spherical constraint was conceived as a relaxatio
the Ising constraint. Indeed, Ising spins,Si[si ,z56 1

2 \, ob-
viously satisfy it. Adjusting the coefficients from the origin
version it may be written as

1

2 (
i 51

N

Si
25Ns, ~1!

with s5\2/8 having dimension (Js)2. The Berlin-Kac
spherical model is defined by the partition sum

Z5E DS e2bHdS 1

2 (
i 51

N

Si
22Ns D

5E DSE
2 i`

i` dm̃

2p i
e2bH2(1/2)m̃( i 51

N Si
2
1m̃Ns, ~2!

where

DS5)
i
E

2`

`

dSi . ~3!
9-2
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QUANTUM SPHERICAL SPIN MODELS PHYSICAL REVIEW E69, 056119 ~2004!
A. Vector spherical spins

For vector spins the generalization of Eq.~1! in the case
of m spin dimensions reads

1

2 (
i 51

N

(
a51

m

~Si
a!25Nms. ~4!

It is worth mentioning that the spin dimensionality in E
~4! is not related to the approach of Stanley, who started w
vector spins and ended up with scalar spherical spins.
only introduce vector spherical spins to avoid the restrict
scalar spins have. We benefit from the fact that the ve
character allows us to study the behavior in a transve
field. A similar step allowed Knops to define a proper ord
parameter for the antiferromagnetic spherical model@5#.

B. Quantization

It is natural to consider theSi analogous to position vari
ables of harmonic oscillators. In quantum mechanics t

become hermitian operatorsŜi with the dimension of\, Js.

The conjugate momentum operatorP̂ i
a is dimensionless and

postulated to satisfy the commutation relation

@Ŝi
a ,P̂ j

b#5 i\d i , jda,b . ~5!

As for harmonic oscillators, this allows us to define creat
and annihilation operators

Ŝ i
a †5

1

\A2
Ŝi

a2
i

A2
P̂ i

a , Ŝ i
a5

1

\A2
Ŝi

a1
i

A2
P̂ i

a ~6!

satisfying the commutation relation

@Ŝ i
a ,Ŝ j

b †#5d i , jda,b . ~7!

C. Spherical constraint on the length of the total spin

There is some freedom to choose the spherical constr
which amounts to describing different physical situatio
The standard quantum constraint considered in literatur
just the quantized version of the mean of Eq.~4!,

constraint 1:
1

2 (
i ,a

^~Ŝi
a!2&5Nms, ~8!

where ^•••& denotes the quantum expectation value. Ob
mair took as the quantum Hamiltonian the classicalH(S)
with spins replaced by operators, and added the kinetic t
that one expects for physical rotors,

Ĥ~Ŝ,P̂ i !5
1

2
g(

i
P̂ i

21H~Ŝ!, ~9!

where g21 is the rotor’s moment of inertia. An effectiv
Hamiltonian which includes the constraint can be deriv
with a Lagrange multiplier. One ends up with
05611
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2
g(

i
P̂ i

21H~Ŝ!1m~ t !F1

2 (
i ,a

~Ŝi
a!22NmsG ,

~10!

where m is the Lagrange multiplier that enforces the co
straint. In equilibrium its value is given by the equation
the spherical constraint]F/]m50. The dynamics is now
fixed by the Heisenberg equations of motion,

dŜi
a

dt
5 i @Ĥ tot~ t !,Ŝi

a~ t !#5gP̂ i
a~ t !, ~11!

dP̂ i
a

dt
5 i @Ĥ tot~ t !,P̂ i

a~ t !#52
]Ĥ

]Ŝi
a

2m~ t !Ŝi
a~ t !. ~12!

where the real parameterm has to be taken time-depende
in order to satisfy the soft constraint~8! at each instant. It is
clear that a nonzerog is needed to get any spin dynamic
Combining the two equations one has

1

g

d2Ŝi
a

dt2
52

]Ĥ

]Ŝi
a

2m~ t !Ŝi
a~ t !. ~13!

It is worth remarking that no energy budget is involved in t
spherical constraint,

^Ĥ tot&5^Ĥ&. ~14!

D. Spherical constraint on the number of spin quanta

In 1995 one of us had proposed a constraint that fixes
number of quanta@14#. In a path integral approach it wa
assumed that thec numbersS i

a , which characterize a coher
ent state, satisfy at each timestep

constraint 28: (
i ,a

S i
a* S i

a5Nm
s̃

\2
. ~15!

It is to be expected that this is equivalent to

constraint 2: (
i ,a

^Ŝ i
a†Ŝ i

a&5(
i ,a

^ni
a&5Nm

s

\2
. ~16!

We shall show below that this is indeed the case, and

relation, s̃5s1\2, is derived in Eq.~38!. This constraint
includes the momenta as can be seen by writing it in
form

constraint 2:
1

2 (
i ,a

~^Ŝi
a 2&1\2^P̂ i

a 2&!5NmS s1
\2

2 D
~17!

For a HamiltonianĤ(Ŝ,P̂) that may, but need not, depen
explicitly on the momenta. The effective spherical Ham
tonian is
9-3
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Ĥ tot5Ĥ~Ŝ,P̂!1
1

2
m(

i ,a
@~Ŝi

a!21\2~P̂ i
a!2#

2NmmS s1
\2

2 D . ~18!

Now, the situation where the Hamiltonian does not d

pend explicitly on the momenta~no kinetic term!, Ĥ(Ŝ,P̂)

→Ĥ(Ŝ), still leads to sensible dynamics, since the constra
already depends on the momenta. Different constraints
scribe different physics. However, at high temperatures
expects the differences to become small.

Equation~11! now bringsP̂ i
a5(dŜi

a/dt)/m(t), Eq. ~12!
remains the same. They may be combined together in
second order equation for the spin operators,

d

dt
S 1

m~ t !

dŜi
a

dt
D 52

]Ĥ

]Ŝi
a

2m~ t !Ŝi
a~ t !. ~19!

In the remaining of this paper we will simplify the notatio
by taking units in which\51.

E. Comparison of the two constraints

The main difference between the two constraints is ob
ously the presence or absence of momenta. In the se
case, Eq.~16!, the spherical constraint can carry all the d
namics of the model. On the contrary, using the first c
straint, Eq.~8!, a kinetic term, with an external parameterg,
has to be added to the Hamiltonian@10#. This parameter
determines the strength of quantum fluctuations; the class
model can be recovered forg50. This fact makes model
with the first constraint describe quantum rotors, as w
pointed out in Ref.@13#. The first constraint, Eq.~8!, brings
actions which are invariant under orthogonal transform
tions. Conversely, using the second constraint, Eq.~16!, the
choice of Hamiltonian can bring symmetry under unita
transformations or orthogonal ones depending on the q
tion whether the Hamiltonian contains momenta or n
Hamiltonians with unitary transformation symmetry yie
free energies analogous to the largeN limit of the generali-
zation of SU~2! Heisenberg spins to SU(N ). Hamiltonians
with orthogonal transformation symmetry share the criti
phenomena with the largeN limit of O(N ) nonlinear sigma
model and describe therefore quantum rotors as occur
using the first constraint, Eq.~8!.

Each of the symmetries belong in different universal
classes in the quantum regime, yet classical critical phen
ena are always the same as in the classical model, consi
with the expectation that quantum effects do not lead
qualitative changes at finite temperatures. We will see
the dynamical critical exponentz is different in both symme-
tries, causing the difference in critical exponents at the qu
tum critical point as was pointed out in Ref.@16#.
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III. PATH INTEGRALS

In this section we explain, following Ref.@15#, how to
add the spherical constraint to a quantum Hamiltonian us
the path integral formalism for models with the second co
straint, Eq.~16!. In second quantization the spins are given
bosonic algebra. In the path integral the boson coherent s
representation is used for the spins~for a review of path
integrals and coherent states, see, e.g., Ref.@17# and for a
complete study of coherent states see, e.g.,@18#!.

A. Bosonic coherent state representation for a single oscillator

Fock space is the Hilbert space of states labeled by
number of oscillator quanta. Coherent states are define
the eigenstates of the annihilator operatorâ. Then it can be
proved that for a system with many particles

uf&5e(afaâa
†
u0&5)

a
H(

na

~faâ†
a!na

na! J u0& ~20!

is a coherent state, whereu0& is the vacuum representation i
Fock’s space, anda stands for each state for any particle
the system. Indeed, because of the identityâa(âa

†)na

5na(âa
†)na211(âa

†)naâa , it holds thatâauf&5fauf&. The
scalar product of two coherent states gives

^fuf8&5e(afa* fa8 . ~21!

A crucial property of the coherent states is that they fo
an overcomplete set of states. Any vector in Fock space
then be expanded in terms of coherent states. This is
pressed by the closure relation@17#

E )
a

dIm~fa!dRe~fa!

p
e2(afa* fauf&^fu51 ~22!

where the measure in the integral comes from gaussian
gration with complex variables and the exponential term
due to the fact that coherent states are not normalized. Le
check that Eq.~22! is indeed a representation of the identi
of Fock space. We insert it in the left hand side of Eq.~21!
and we get

^fu1uf8&5E )
a

dIm~ca!dRe~ca!

p
e2(aca* ca^fuc&^cuf8&

5E )
a

dIm~ca!dRe~ca!

p
e(a2(ca* ca2fa* ca2ca* fa8 )

5e(afa* fa8 ~23!

which indeed is the right hand side of Eq.~21!.
The partition function of any quantum systemZ

5tr@e2bH(â†,â)# can be computed by the Trotter approac
The exponential has the same form as a time evolution
erator in imaginary time. Thus it is possible to create a p
integral over closed paths. The procedure is to split the
ponential in a product ofM equal terms. Between each pa
9-4
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of them a representation of the identity, Eq.~22!, is inserted.
The partition sum then has the following shape:

Z5tr$~e2eH(â†,â)!M%

5tr$e2eH(â†,â)1e2eH(â†,â)1•••1e2eH(â†,â)%, ~24!

wheree5b/M and each1 is an identity operator. Each o
these identities is given an index; they represent the step
system passes through in a discretized path. By using
identity defined in Eq.~22! the following matrix element is
needed:

^f j ue2eH(â†,â)uf j 21&. ~25!

Provided the Hamiltonian is normal ordered, the outcome
@17#

^f j ue2eH(â†,â)uf j 21&'^f j u12eH~ â†,â!uf j 21&

5ef j* •f j 21@12eH~f j* ,f j 21!#

5ef j* •f j 212eH(f j* ,f j 21)1O~e2!.

~26!

Correction terms can be neglected in the limitM→`
@17#. Each identity brings an integral at each time step. Th
integrals cover any path between its initial and its final sta
The trace will finally tie the ends giving a closed path. T
partition function finally reads

Z5E
fa(b)5fa(0)

D„fa* ~t!fa~t!…

3expH (
t50

b

dtFf* ~t!
df~t!

dt
1H„f* ~t!,f~t2dt!…G J ,

~27!

where the subindex of the integral reflects the trace struc
of the partition function since it gives a closed path integr
t stands for the imaginary time step, sof(t)5f i ; dt is the
imaginary time difference between steps, sof(t2dt)
5f i 21; and

df~t!

dt
5

f~t!2f~t2dt!

dt
5

f i2f i 21

b/M
. ~28!

Despite the fact that the nomenclature used in these
mulas suggests a continuous time, it should always be un
stood as being discrete. The limitM→` should always be
taken at the end of the calculations, otherwise some inde
minacies may arise. Continuous notation is used neverthe
because it is more compact.

B. Coherent state representation for spherical spins

We can deal with spherical spins using almost the sa

approach. The operatorâi is identified with Ŝ i
a , where the

index a denotes the spin vector direction, and the cor
05611
he
he

is

e
.

re
l;

r-
er-

r-
ss

e

-

sponding fieldsf i are denoted asS i
a . We remind that the

spherical constraint we use is the one defined in Eq.~16!.
In order to impose this constraint in the path integral fo

malism, the identity definition Eq.~22! is modified to adopt
to the spherical case, in a way inspired by Ref.@15#: one
restricts the path integral to states which exactly satisfy
constraint by employing the truncated identity

1→1spherical

[CE )
ia

dIm~S i
a!dRe~S i

a!

p
e2S* •SuS&^Sud~ n̂2Nms!

~29!

where the number operatorn̂,

n̂5(
i ,a

Ŝ i
a†Ŝ i

a , ~30!

counts the total number of spin quanta. We insert

d~ n̂2Nms!5E
2`

` edm̃

2p
e2 i em̃(n̂2Nms)

5E
2 i`

i` edm

2p i
e2em(n̂2Nms), ~31!

wherem5 i m̃ is imaginary.~Strictly speaking, we should in
sert a Kronecker-d function, rather than the Dirac-d, but for
largeN this amounts to the same.! Repeating the same pro
cedure with this new identity we get

Z5E
S(b)5S(0)

DmDS* DSexp~2A!, ~32!

with the action

A5 (
t50

b

dtFS* ~t!•
dS~t!

dt
1m~t!„S* ~t!•S~t2dt!

2Nms…1H„S* ~t!,S~t2dt!…G ~33!

and integration measures defined as

E DS* DS5)
iat

E
2`

` E
2`

` dIm~S i
a~t!!dRe~S i

a~t!!

p
~34a!

E Dm5C)
t
E

2 i`

i` edm~t!

2p i
~34b!

wherem(t) is the Lagrange multiplier introduced to impos
the spherical constraint and the prefactorC(M ) is added to
ensure, if needed, a proper normalization. Details on
factor are given in Ref.@15#.

It should be noted that the particle number operator in
definition of the identity, Eq.~29!, will be surrounded, as is
9-5
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the case for the Hamiltonian, by spin operators on differ
timesteps; therefore its creation and annihilation opera

will also be projected on different timesteps,Ŝ i
a †Ŝ i

a

→S i
a * (t)S i

a(t2dt). In Refs. @14,15# the spherical con-
straint was slightly different from the one presented he
The proposal was to take the constraint not in terms of
particle number operator but in terms of its generating v
ables~which arec numbers!, at every imaginary timestep,

S* •S5(
i 51

N

(
a51

m

S i
a* ~t!S i

a~t!5Nms̃ ~35!

so they acquire the same time-index. The two actions t
differ only in the timestep projection of the spherical co
straint, so with this constraint one obtainedS* (t)•S(t)
rather thanS* (t)•S(t2dt). The difference that this bring
can be seen as follows. Starting from Eq.~32! we want to
have two operators projected at the same time. To ach
this, it turns out that we must exchange the order of
operators,S†S5SS†21. The termSS† can be projected a
a single time as one can see following Eq.~26!. For a single
component spin at timestepj the relevant matrix element is

^S j 11ue2eĤe2emŜ†Ŝe2eĤuS j 21&

5^S j 11ue2eĤ~11em2emŜŜ†!e2eĤuS j 21&

5~11em!^S j 11ue2eĤuS j&^S j ue2eĤuS j 21&

2em^S j 11ue2eĤŜuS j&^S j uŜ†e2eĤuS j 21&

5~11em2emS j* S j !^S j 11ue2eĤuS j&^S j ue2eĤuS j 21&

5eem2emS j* S j^S j 11ue2eĤuS j&^S j ue2eĤuS j 21& ~36!

Thus a factoreem2emS i
a * (t)S i

a(t) comes for each spin operato

Ŝ i
a at each timestep. This leads to the spherical constrai

1spherical[CE )
ia

dIm~S i
a!dRe~S i

a!

p
e2S* •SuS&

3^SudS (
i ,a

S i
a * S i

a2Nm2Nms D ~37!

that with definition Eq.~35! should be compared to Eq.~29!.
In words, the spherical constraint can indeed be taken on
coherent state variables as in Eq.~35! or in Ref. @14#, pro-
vided one makes the identifications̃5s11, or, restoring
units,

s̃5s1\2. ~38!

In Eq. ~48! we will verify that with this identification the two
approaches indeed yield the same free energy.

It is worth remarking that we imposed the spherical co
straint strictly, no thermal average has been performed. In
following sectionm will be integrated over by the method o
05611
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steepest descends, a procedure that allows the particle n
ber to fluctuate; therefore the satisfiability of the constra
remains only in average.

IV. FERROMAGNETIC HAMILTONIANS WITH
CREATION AND ANNIHILATION OPERATORS

Using the formalism described in Sec. III we can stu
the Hamiltonian

H~Ŝ†,Ŝ!52(
iÞ j

Ji j Ŝi
†Ŝj2(

i
G i

~Ŝi
†1Ŝi !

A2

52
1

2 (
iÞ j

Ji j ~ŜiŜj1P̂iP̂j !2(
i

G iŜi ~39!

where in the second equality we inserted in Eq.~6!. The

iŜiP̂ j cancelled since we assumed symmetric couplings,Ji j
5Jji . Obviously, the momentum operators do occur in t
expression. The couplingsJi j can in principle express an
kind of interaction, ferromagnetic, antiferromagnetic, sp
glass, etc. TheG i represent an external field, that can
constant, variable, random etc. Later on, we will focus
ferromagnetic couplings in the presence of constant magn
field. This Hamiltonian without the external magnetic field
symmetric under unitary transformations, a fact that will d
termine the critical behavior.

The first step to get the partition function is to diagonali
the couplings,

Si~t!5(
l

Sl~t!ei
l ,

Sl~t!5(
i

Si~t!ei
l , ~40!

whereei
l is the normalized eigenvector of the coupling m

trix Ji j .
Keeping in mind its ill definedness, we may write th

partition function sum as a continuum expression,

Z5E DtDSDS* expH 2E dt(
a,l

FSl
a* ~t!

dSl
a~t!

dt

1m~t!~Sl
a* ~t!Sl

a~t2dt!2Nms!2JlSl
a* ~t!Sl

a~t

2dt!2
1

A2
Gl~Sl

a* ~t!1Sl
a~t2dt!!G J . ~41!

In discrete notation, the action of Eq.~32! reads
9-6
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A5(
j

eH 1

e (
a,l

@Sl, j
a* Sl, j

a 2Sl, j
a* Sl, j 21

a #1m~ j e!

3F(
a,l

Sl, j
a * Sl, j 21

a 2NmsG2(
a,l

JlSl, j
a* Sl, j 21

a

2(
a,l

Gl

~Sl, j
a* 1Sl, j 21

a !

A2
J ~42!

wheree5dt is the imaginary time step,j the time index and
Gl5( iG iel

i is the field in the basis of eigenvectors ofJi j .
Collecting all terms we have

Z5E Dm)
l,a

H E )
j

S dSl, j
a * dSl, j

a

2p i DexpF2(
i j

Sl,i
a* Bi j Sl, j

a

1(
j

eGl

~Sl, j
a * 1Sl, j 21

a !

A2
G J e( jNmsem( j e), ~43!

where Bij 5d i j 2@11eJl2em( j e)#d i , j 118 ; here the prime
stands for the fact thatd1,M118 [1 due to the trace structur
of the partition function. We can now integrate over the sp

Z5E DmexpF(
l,a

H 2m ln detBi j 1
e2Gl

2

2 (
i j

Bi j
21

1mse(
j

m~ j e!J G . ~44!

As usual, in thermodynamics, one-time quantities l
m(t) can be taken independent oft. We will employ this
simplification throughout the rest of this paper. The deter
nant and the matrix inversion can then be performed@17#.
Integrating overm by the saddle point method we obtain

bF52msbm1
1

N (
l,a

H ln~12al!2
Me2Gl

2

2~12al!J ,

~45!

whereal512e(m2Jl). SendingM→` we finally get

bF52bmms1
m

N (
l

H ln~12e2b(m2Jl)!2
bGl

2

2~m2Jl!J
52bmmS s1

1

2D1mE dJlr~Jl!H lnF2 sinhS b

2
~m

2Jl! D G2
bGl

2

2~m2Jl!J , ~46!

where in the last equality we have assumed that the c
plings satisfy (1/N)(lJl50. The saddle point equatio
reads
05611
s

i-

u-

s115
1

N (
l

H 1

12e2b(m2Jl)
1

Gl
2

2~m2Jl!2J
5E dJlr~Jl!H 1

12e2b(m2Jl)
1

Gl
2

2~m2Jl!2J .

~47!

The sums over the different eigenvalues of the coupl
matrix have been changed into integrals. EachJl has a
weight in this integral given byr(Jl). The actual form for
this weight function will depend on the type of couplings.
set of weight functions for ferromagnets in different cub
lattices can be found in Ref.@3#, and for spin glasses with
long range interactions in Refs.@15,7#.

In Ref. @15#, where the spherical constraint used was
one in Eq. ~35!, the matrix B was different, namely,Bij
5@11em( j e)#di j 2(11eJl)di , j 118 . Then Eq.~46! reads

bF52bmm s̃1
m

N (
l

H ln~ebm2ebJl)!2
bGl

2

2~m2Jl!J
52bmmS s̃2

1

2D1mE dJlr~Jl!H lnF2 sinhS b

2
~m

2Jl! D G2
bGl

2

2~m2Jl!J ~48!

confirming that the already found shifts̃5s11, see Eq.
~38!, indeed brings the same value for the free energy.

At large temperatures these equations reduce to

bF52bmms̃1mE dJlr~Jl!H ln b~m2Jl!2
bGl

2

2~m2Jl!J ,

~49!

s̃5E dJlr~Jl!H T

m2Jl
1

Gl
2

2~m2Jl!2J . ~50!

Apart from a factor two, these are exactly the equations
the classical spherical model, see, e.g., Ref.@3#. This factor 2
arises because the momenta double the degrees of free
see, e.g., Ref.@14#. Near the phase transition they are alrea
approximate, but the transition stays within the same univ
sality class.

A. Ferromagnetic couplings with transversal field
in d dimensions

In this section we will use the results given in the prece
ing section for the concrete case of ferromagnetism c
plings with uniform transversal field. The Hamiltonian in th
case differs from the one before Eq.~39! in the fact that the
couplings only act in thez direction while the external field
only acts in thex direction~we restrict ourselves therefore t
m52). The free energy reads
9-7
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bF52bm~2s11!1E ddk

~2p!d
lnF2 sinhS b

2
@m2J~k!# D G

1 lnF2 sinhS bm

2 D G2
bG2

2m
~51!

and the saddle point equation

2~s11!5E ddk

~2p!d

1

12e2b[m2J(k)]
1

1

12e2bm
1

G2

2m2
,

~52!

where we have applied the changesJl→J(k) and

E dJlr~Jl!5E
2p

p ddk

~2p!d
. ~53!

We chooseJ(k)'J02J8ukux for uku→0. In the case of
short range couplings, for instance, one hasx52 since
J(k)5(J coski'J(0)21

2Juku2. A long range coupling tha
decays asJ(r );1/r 2a at larger givesx5a2d.

As in the theory of Bose-Einstein condensation, t
saddle point equation fixes the dependence ofm on tempera-
ture. There should be a solution at anyT. In order to have a
real free energy,m cannot be smaller than the maximu
value forJ(k). Therefore, we should investigate the conv
gence of the integral in the limitm→J0. If the integral di-
verges,b must go to infinity beforem reachesJ0 in order to
satisfy the saddle point equation, so there exists am for all
temperatures and no phase transition occurs. If the inte
converges, however, there will be a range of temperature
which the saddle point as it stands cannot hold. This in
cates that we have overlooked a macroscopic occupatio
the ground state, as occurs in Bose-Einstein condensa
The relevant integral behaves as

E
2p

p ddk

~2p!d

1

12e2b[J02J(k)]
'

Vd

~2p!dE0
dkkd21

1

12e2bJ8kx

}E
0
dkkd212x, ~54!

whereVd is the hypersurface of a sphere ind dimensions. At
k50, this integral converges ford.x, hence there will be a
phase transition for dimensions larger thanx.

At low temperatures,m may get stuck atJ0 and the saddle
point equation as it is in Eq.~52! is no longer valid. This is
because, as in Bose-Einstein condensation calculations
ground state is not properly included in the integral. It sho
be taken out of the sum before this one is converted to
integral. This causes a change in the free energy by a fa
(m2J0)q and the saddle point equation becomes

2~s11!5E ddk

~2p!d

1

12e2b[m2J(k)]
1

1

12e2bm
1

G2

2m2

1q, ~55!
05611
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whereq51/N^Ŝk50
z† Ŝk50

z & is the ground state occupation.q
can be evaluated from the saddle point equationm
2J0)Aq50. Thus whenm5J0 the occupation of the ground
state can take nonzero values that can be determined u
Eq. ~55!. Hence the ground state occupation is macrosco
in the ordered phase.

A transversal field will lower the transition temperatur
Above a certain valueGc , the transition does not exist any
more, thusT50, G5Gc is a quantum critical point~for a
complete study over quantum phase transitions, see, e.g.
@19#!. We will now first study the classical critical poin
whereG50.

1. Finite temperature phase transition

For the dimensions where the phase transition exists,
critical temperature is found by solving the equation

2~s11!5E ddk

~2p!d

1

12e2bc[J02J(k)]
1

1

12e2bcJ0

~56!

The dependence of the chemical potential on the temp
ture near the transition is the first thing needed. To get it,
expand the saddle point equation around the critical po
T5Tc1t, m5J01dm. The integral gives, up to first orde
in dm andt

E
2p

p ddk

~2p!d

1

12e2b(m2J(k))

'E
2p

p ddk

~2p!d F 1

12e2bc[J02J(k)]

1t
J02J~k!

4Tc
2sinh2S J02J~k!

2Tc
D 2dm

1

4Tcsinh2S J02J~k!

2Tc
D .

~57!

The coefficient ofdm is an integral that diverges ford
<2x. This means that for these dimensions the leading te
in the dm expansion of Eq.~57! has a power smaller tha
one. For dimensionsd.2x we will havedm}t which will
lead to the mean-field exponents, 2x is therefore the uppe
critical dimension. To study the system near the critical po
we subtract Eq.~56! from the saddle point equation, a pro
cedure that will cancel the zeroth order term in the expans
in t anddm, giving finally

t'ad,2xdm~d2x!/x for x,d,2x,

ad,2x5a
4VdTc

3p

~2p!dJ8
d
xxsinS ~d2x!p

x D ,
9-8
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t'ad52xdm ln dm for d52x,

ad52x5a
4VdTc

3

~2p!dJ82x
,

t'ad.2xdm for d.2x,

ad.2x5aTcF E ddk

~2p!d

1

sinh2S J02J~k!

2Tc
D 1

1

sinh2S J0

2Tc
D G
~58!

where

a5F E2p

p ddk

~2p!d

J02J~k!

sinh2S J02J~k!

2Tc
D 1

J0

sinh2S J0

2Tc
D G

21

~59!

is a finite, positive number.
The internal energy of the system reads

U52m~2s11!1E
2p

p ddk

~2p!d

m2J~k!

2
cothFb@m2J~k!#

2 G
1

m

2
cothS bm

2 D2
G2

2m
. ~60!

The specific heat close to the transition from the param
netic side can be written as

C'H C01
x

ad,2x~d2x!
C1t~2x2d!/~d2x! for x,d,2x

C01
1

ad.2x
C1 for d.2x

~61!

where

C05
1

4T2E2p

p ddk

~2p!d

@m2J~k!#2

sinh2S m2J~k!

2T D 1
m2

4T2sinh2S m

2TD ,

~62!

C1522s211E
2p

p ddk

~2p!d H 1

2
cothFm2J~k!

2T G

2
m2J~k!

4Tsinh2S m2J~k!

2T D J 1
1

2
cothS m

2TD

2
m

4Tsinh2S m

2TD 1
G2

2m2
, ~63!
05611
g-

wheread are the prefactors in Eq.~58! for the corresponding
dimension. In the ordered phasem is stuck in its minimum
value (m5J0) for any temperature. Hence,C5C0(m5J0)
in the ordered phase. The critical exponenta is the expected
one:a5(d22x)/(d2x) for x,d,2x, and the mean-field
valuea50 holds ford.2x, which describes a jump in the
specific heat.

Adding a small longitudinal fieldh, the free energy read

bF52bm~2s11!1E ddk

~2p!d
lnF2sinhS b

2
@m2J~k!# D G

1 lnF2sinhS bm

2 D G2
bG2

2m
2

bh2

2~m2J0!
~64!

and the saddle point equation becomes

2~s11!5E ddk

~2p!d

1

12e2b(m2J(k))
1

1

12e2bm
1

G2

2m2

1
h2

2~m2J0!2
. ~65!

By differentiating the free energy with respect toh it can
be seen that the magnetization isMz5h/(m2J0). In the
limit h→0, it is proportional to the square root of the occ
pation of the ground state, since by comparing Eq.~65! with

Eq. ~55! one findsq5(1/N)^Ŝk50
z† Ŝk50

z &5Mz
2/2. The factor

1
2 appears because it is actually the real part of the spin fi
the one macroscopically occupied and a half term appea
the change Eq.~6!. From Eq. ~65!, we can approach the
transition by sending the longitudinal field to zero at t
critical temperature. The saddle point equation now accou
for the dependence of the chemical potential on the field. T
calculation is similar, yielding finally

h'S 2VdTcp

~2p!dJ8d/xx sinS p~d2x!

x D D
1/2

dm~d1x!/2x

for x,d,2x,

h'F 2VdTc

~2p!dJ82x
lndmG 1/2

dm3/2 for d52x,

h'S E ddk

~2p!d

1

2Tcsinh2S J02J~k!

2Tc
D

1
1

2Tcsinh2S J0

2Tc
D D

1/2

dm3/2 for d.2x. ~66!

Therefore the critical exponentd is given by d5(d
1x)/(d2x) for dimensionsx,d,2x and the mean-field
valued53 is recovered ford.2x. From the magnetization
9-9
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the susceptibility follows asx'1/dm. Therefore we findg
5x/(d2x) for x,d,2x and g51 for d.2x. In the or-
dered phase, the expansion of the saddle point equation
~65!, for T near the transition yields

Mz
2't

1

2Tc
2F E2p

p ddk

~2p!d

J02J~k!

sinh2S J02J~k!

2Tc
D 1

J0

sinh2S J0

2Tc
D G .

~67!

Therefore for all dimensions where the phase transit
exists, one hasb5 1

2 .
For other critical exponents the correlation functi

is needed. It can be computed adding the right sou

term to the Hamiltonian,(l(gl(tq)Ŝl
†1gl* (t r)Ŝl) and

differentiating

G(l,tqul8,t r)

5^T@Ŝl
z †~tq!Ŝl8

z
~t r !#&

5dl,l8

]2

]gl* ~tq!]gl8~t r !

Z~g* ,g!

Z0
U

g* 5g50

,

~68!

whereT stands for the time ordered product.Z(g* ,g) is the
partition function of the Hamiltonian including the sourc
terms andZ0 is the partition function without them. Thi
procedure is carefully explained in Ref.@17# giving the result

G~k,t!5G~k,tuk,0!

5et(m2J(k))$u~t2h!~11nk!1u~2t1h!nk%, ~69!

where u is a Heaviside step function andh is a positive
infinitesimal that indicates that the second term is the
evant one att50. Furthermore,

nk5
1

ebv21
~70!

is the boson occupation probability, withv5m2J(k). Fou-
rier transforming this last result to Matsubara frequencies
get

G~k,vn!5
1

J~k!2m2 ivn
——→

k→0 21

J8ukux1dm1 ivn

.

~71!

So when we approach the critical point, we can see fr
this equation thatj2x}dm, then using Eq.~58! we find that
n51/(d2x) for dimensionsx,d,2x and n51/x for d
.2x. h522x due to the fact that the couplings depend
kx, and z5x because in the denominatorv appears as a
linear term. Bothh andz are valid for any dimension.

This finally gives all the critical exponents of this finit
temperature phase transition, which are exactly the sam
in the classical model. This is expected from renormalizat
05611
q.

n

e

l-

e

as
n

group arguments@16#. The critical behavior is controlled by
a classical fixed point, therefore quantum dynamics does
play a qualitatively new role. Hence, the results are the sa
as in the classical spherical model@3# or other models with
different quantum dynamics considered at finite temperatu
@13#.

2. TÄ0 quantum phase transition

In this section we analyze the behavior of the system
T50. As it can be seen from Eq.~52!, when the transversa
field increases, the temperature of the transition decrease
it reaches zero. This defines a quantum critical pointTc50
at G5Gc . In order to study it, an analogous procedure
before should be followed. AtT50 everything happens to b
rather simple. The free energy reduces to

F522sm2
G2

2m
. ~72!

The saddle point equation turns out to be

2s5
G2

2m2
in the paramagnetic phase,

2s5
G2

2J0
2

1q in the ferromagnetic phase. ~73!

where q5 1
2 Mz

2 is the occupation of the ground state f
small transversal fields. Since the temperature vanis
quantum fluctuations, controlled byG, give rise to the phase
transition. Therefore, the parameter that should be use
control the transition is the transversal field and not the te
perature. Then the proper analog of the specific heat will
proportional to the second derivative of the free energy w
respect to the source of fluctuations, the transversal field

CG[
]2F

]G2
52

1

m
1

G

m2

]m

]G
. ~74!

As before, we must know the dependence ofdm (m5J0
1dm) on the distance to the critical point (dG) in the para-
magnetic phase. In this problem, the lower critical dimens
is dlc50, since ford.0 the volume element*ddk is finite.
The upper critical dimension will beduc5x. Between those
two dimensions, 0,d,x, the analysis of the saddle poin
equation yields that the productbdm goes to finite, strictly
positive value forT→0. This leads to a scaling fromdm
}dGx/d . On theT50 line, the analog of the specific hea
goes continuously from the paramagnetic vauleCG'
21/J01Gc/J0

2dG (x2d)/d to the simple ferromagnetic valu
CG521/J0 . This implies thata5(d2x)/d. Adding a lon-
gitudinal field we find the dependencedm}dh2x/(d12x)

bringing d5(d12x)/d andg5d/x. Subtracting the saddle
point equation near the transition in the ferromagnetic ph
from the one at the transition, we getq5(G22Gc

2)/2J0
2 ,

which in the lowest order givesMz
2}dG and therefore, as
9-10
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always, b5 1
2 . Equation ~71! can be used here once it

transformed to real frequencies,ivn5v1 ih. Then we find
n51/d, h522x, andz5x.

For dimensionsd.x, from Eqs.~74! and ~73!, it can be
seen that the analog of the specific heat has a jump dis
tinuity, implying a50.

CG50 in the paramagnetic phase,

CG5
21

J0
in the ferromagnetic phase. ~75!

where the minus sign comes from the fact that theT50 free
energy, Eq.~72!, is negative. Adding a small longitudina
field as before, we find the critical exponentd53, since
Mz}h/dm and dm}h2/3 at Gc . For the susceptibility, we
find g51 sincex}dm21}dG21. As before we findb5 1

2

and sincedm}dG we find n51/x, h522x and z5x.
Hence, ford.x, we find the mean-field values. This occu
because the quantum critical point of ad-dimensional model
shares the critical exponents of a classical critical point o
~d1z!-dimensional model, as it was shown by general ren
malization group arguments@16#.

V. HAMILTONIANS INVOLVING SPINS BUT NOT
THEIR MOMENTA

In this section we are going to extend the analysis of S
IV to a Hamiltonian which only depends on the spin ope

tors Ŝ and not on the momentaP̂. When going from the
classical to the quantum model, we have to keep in mind
the Hamiltonian must be Hermitian. To be precise,
Hamiltonian we will deal with is

H52
1

2 (
i j

Ji j ŜiŜj2(
i

G iŜi ~76!

with real valuedJi j andG i and whereŜ5(Ŝ†1Ŝ)/A2 is the
real part of the former spin field. Hence, the Hamiltoni
does not involve momenta, but the spherical constraint d
see Eq.~16!. This changes the symmetry of the problem fro
invariance under unitary transformations to orthogonal on
In terms of boson creation and annihilation operators
coupling term for symmetric interactions,Ji j 5Jji , is propor-

tional toJi j (2Ŝi
†Ŝj1ŜiŜj1Ŝi

†Ŝj
†), where we can notice the

symmetry of the problem. We will see that this model rep
duces the O(N ) quantum rotor model.

We can get the partition function in many ways. A simil
procedure using discrete imaginary time path integrals
be done as before. This gives us many problems due to
fact that creation and annihilation operators are projected
different time steps which is a lengthy and tedious proced
However, the form of the Hamiltonian makes it suitable
apply a Bogoliubov transformation~for details see, e.g., Ref
@20#!. Due to that, we get the same Hamiltonian as before
with different coefficients. In order to do so, we must add
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spherical constraint directly to the Hamiltonian. The proc
dure is as follows: first the couplings matrix is diagonaliz
by inverting the lattice as done before in Eq.~40! and then

the Ŝ’s are shifted to absorb the field term. This finally giv

H5(
l

H S m2
Jl

2 D Ŝl
†Ŝl2

Jl

4
~Ŝl

†Ŝ2l
† 1ŜlŜ2l!

2
Gl

2

2~m2Jl!J 2Nmms. ~77!

Performing the Bogoliubov transformation it turns into

H5(
l

HAm~m2Jl!âl
†âl2

Gl
2

2~m2Jl!J 2Nmms,

~78!

which is a Hamiltonian analogous to Eq.~39!. So it can be
diagonalized as explained, giving finally

bF52bmmS s1
1

2D1mE dJlr~Jl!

3H lnF2 sinhS b

2
Am~m2Jl! D G2

bGl
2

2~m2Jl!J , ~79!

where we have put back the factorm standing for the numbe
of components of the vector spin. The saddle point equa
is obtained as

s1
1

2
5E dJlr~Jl!H 2m2Jl

4Am~m2Jl!
coth

b

2
Am~m2Jl!

1
bGl

2

2~m2Jl!2J . ~80!

At large temperatures these equations reduce to

bF52bmmS s1
1

2D1mE dJlr~Jl!H lnbAm~m2Jl!

2
bGl

2

2~m2Jl!J , ~81!

s1
1

2
5E dJlr~Jl!H T

2m
1

T

2~m2Jl!
1

bGl
2

2~m2Jl!2J ,

~82!
9-11
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These equations are very similar to the standard one
the classical spherical model~up to a factor 2), see Eq.~49!,
but they are only identical where they should be, namely
largeT, where alsom;T is very large, see also Ref.@3#.

A. Ferromagnetic couplings in the presence
of a transversal field

Analyzing the phase transition of the Hamiltonian th
does not depend on the momenta is analogous to the p
ous case. We begin again by choosing the coupling term
the z direction and the external field in thex and we assume
ferromagnetic couplings. The saddle point equation give
phase transition via a macroscopic occupation of the gro
state, which in the present case is a bit more complica
The critical exponents are different, due to the fact that
symmetries of the system have changed. The free en
reads

bF52bm~2s11!

1E ddk

~2p!d
lnF2 sinhS b

2
Am@m2J~k!# D G

1 lnF2 sinhS bm

2 D G2
bG2

2m
~83!

and the saddle point equation

4s125E ddk

~2p!d

2m2J~k!

2Am@m2J~k!#
cothFb2Am@m2J~k!#G

1cothS bm

2 D1
G2

m2
. ~84!

We now analyze this model in detail.

1. Finite temperature phase transition

Following the same procedure as before we can find
the transition exists ford.x and that the upper critical di
mension isd52x. The critical temperature is the solution o

4s125E ddk

~2p!d

2J02J~k!

2AJ0@J02J~k!#
cothFb2AJ0@J02J~k!#G

1cothS bJ0

2 D . ~85!

The dependence of the chemical potential in the temp
ture near the classical critical point reads

t'ad,2xdm~d2x!/x for x,d,2x,
05611
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ad,2x5a
2VdTc

3p

~2p!dJ8
d
xxsinS ~d2x!p

x D

t'ad52xdm ln dm, ad52x5a
2VdTc

3

~2p!dJ82x
for d52x

t'ad.2xdm, for d.2x

ad.2x5aS ]

]m H E ddk

~2p!d

2m2J~k!

2Am~m2J~k!!

3cothFb2Am@m2J~k!#G1cothS bm

2 D J D
m5J0

,

~86!

where

a5F E2p

p ddk

~2p!d

2J02J~k!

2sinh2S AJ0@J02J~k!#

2Tc
D

1
J0

sinh2S J0

2Tc
D G

21

. ~87!

The internal energy of the system reads

U52m~2s11!

1E
2p

p ddk

~2p!d

Am@m2J~k!#

2
cothFb2Am@m2J~k!#G

1
m

2
cothS bm

2 D2
G2

2m
. ~88!

The specific heat has the same expression as in Eq.~61!
wheread now correspond to the prefactors of Eq.~86! and
with coefficients

C05
1

4T2
E

2p

p ddk

~2p!d

m@m2J~k!#

sinh2S Am@m2J~k!#

2T
D

1
m2

4T2sinh2S m

2T
D ~89!
9-12
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C152~2s11!1E
2p

p ddk

~2p!d H 2m2J~k!

4Am@m2J~k!#

3cothS b

2
Am@m2J~k!# D

2
2m2J~k!

8T sinh2S Am@m2J~k!#

2T
D J

1
1

2
cothS m

2T
D 2

m

4Tsinh2S m

2T
D ~90!

This is analogous to the previous model and gives
same exponent,a5(d22x)/(d2x) for x,d,2x and a
50 for d.2x. Adding a small magnetic field longitudinal t
the couplings, the free energy becomes

bF52bm~2s11!

1E ddk

~2p!d
lnF2 sinhS b

2
Am@m2J~k!# D G

1 lnF2 sinhS bm

2 D G2
bG2

2m
2

bh2

2~m2J0!
~91!

therefore the magnetization isMz5h/(m2J0), which is as
before the square root of the occupation of the ground s

q51/N^Ŝz(uku50)2&5Mz
2 . The saddle point equation i

now

2~2s11!5E
2p

p ddk

~2p!d

2m2J~k!

2Am@m2J~k!#

3cothH b

2
Am@m2J~k!#J 1cothS bm

2 D1
G2

m2

1
h2

~m2J0!2
. ~92!

With all these and following the algebra of the precedi
section one finds the same critical exponents for the mag
tization for the same dimensions since we are in the class
critical point.

The time ordered correlation function̂TŜk
z(t)Ŝ2k

z (0)&
differs from the previous one, Eq.~69!, since in this case the
05611
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Ŝ are not the variables that diagonalize the Hamiltonian

Eq. ~78!. We must writeŜ in terms ofâ and then compute
the correlations. This brings

G~k,tuk,0!5
J~k!

4Am@m2J~k!#
$nk cosh@tAm@m2J~k!##

1e2utuAm[m2J(k)]% ~93!

where

nk5
1

ebAm[m2J(k)]21
, ~94!

which in frequency space reads

G~k,ivn!5
2J~k!

2@vn
22m@m2J~k!##

. ~95!

When approaching the critical point we find thatj2x

}dm as before and we get the same valuen51/(d2x) for
dimensionsx,d,2x and n51/x for d.2x. Since cou-
plings appear in the same way as before we also get the s
value,h522x for all dimensions.. The difference appea
in the dynamical critical exponent. Herevn appears squared
thereforez5x/2. Here we see how the model reproduces
critical exponents of the rotor model as in Ref.@13# bringing
thus a different behavior at theT50 quantum critical point
from the model of Sec. IV A 2.

2. TÄ0 quantum phase transition

In this case theT50 phase transition is more interestin
due to the fact that the dynamical critical exponentz5x/2 is
smaller thanz5x of the preceding section. The free ener
reads

F52m~2s11!1E ddk

~2p!d

Am@m2J~k!#

2
1

m

2
2

G2

2m
~96!

and the saddle point is set by

4s115E ddk

~2p!d

2m2J~k!

2Am@m2J~k!#
1

G2

m2
. ~97!

We find that the transition exists for dimensions larger th
d.x/2 and d53x/2 is the upper critical dimension. Th
chemical potential depends on the source of fluctuati
dG5G2Gc as
9-13
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dG'ad,3x/2dm2d2x/2x,

ad,3x/25
VdJ0

5/2

2~2p!dJ8d/x

GS 3

2
2

d

xDGS d

xD
~2d2x!xAp

for
x

2
,d,

3x

2
,

dG'ad53x/2dm lndm,

ad53x/25
Vd

~2p!d

J0
5/2

8xJ83/2
for d5

3x

2
,

he
rit

ti

s
e

05611
dG'ad.3x/2dm, for d.
3x

2

ad53x/25
J0

2

2 F2Gc
2

J0
3

2E ddk

~2p!d H 1

AJ0@J02J~k!#

2
2J02J~k!

4$J0@J02J~k!#%3/2J G , ~98!

where theG ’s on the right hand side of the first equality a
Euler’s G functions. The specific heat@see Eq.~74!# coming
from the disordered region will behave as
CG'5
21

J0
2

4Gc

ad,3x/2J0
2~2d2x!

dG22d13x/2d2x for
x

2
,d,

3x

2

21

J0
1

2Gc

J0
4 S 2Gc

2

J0
3

2ad.3x/2D 21

for d.
3x

2

~99!
to-
rical
er

-
sed.
wheread is the prefactor in Eq.~98! for the proper dimen-
sion. Coming from the ordered region, conversely,CG'
21/J0. Thereforea5(2d23x)/(2d2x) for x/2,d,3x/2
anda50 for d.3x/2.

The dependence of a small longitudinal field on t
chemical potential, in case the transversal field is at its c
cal value, reads

h'ad,3x/2
1/2 dm~2d13x!/4x for

x

2
,d,

3x

2
,

h'@ad53x/2ln dm#1/2dm3/2 for d5
3x

2

h'S 2
2Gc

2

J0
3

2ad.3x/2D 1/2

dm3/2 for d.
3x

2
. ~100!

From these equations and the ones for the magnetiza
and the susceptibility we can find thatd5(2d13x)/(2d
2x) andg52x/(2d2x) for x/2,d,3x/2, while d53 and
g51 for d.3x/2. As beforeb51/2 for every dimension.
For the correlation function the calculation is the same a
the finite temperature case, projected into real time, the
ponents aren52/(2d2x) for dimensionsx/2,d,3x/2 and
n51/x above the critical dimension,h522x andz5x/2 for
all dimensions.
i-

on

in
x-

VI. GENERALIZATION AND MAPPING
FROM HEISENBERG SPINS

In this section we generalize the two preceding Hamil
nians and we map the Heisenberg model onto the sphe
model. In a more compact way, we can write the form
Hamiltonians in absence of external field as

H52(
i j

S Ai j Ŝ i
†Ŝ j1

Bi j

2
@Ŝ i

†Ŝ j
†1Ŝ iŜ j # D . ~101!

If the matricesAi j and Bi j can be diagonalized simulta
neously, the techniques from preceding sections can be u
The free energy reads

bF52bmmS s1
1

2D1
m

N (
l

FbAl

2

1 lnH 2 sinhS b

2
A~m2Al!22Bl

2D J G , ~102!

wherem satisfies the saddle point equation

s1
1

2
5

1

N
(
l

m2Al

2A~m2Al!22Bl
2

3cothH b

2
A~m2Al!22Bl

2J . ~103!
9-14
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The coefficientBi j in Eq. ~101! is responsible for a
change in the symmetries of the problem. IfBi j is zero, the
action is symmetric under unitary transformations while if
is nonzero the symmetry is reduced to orthogonal.

The mapping from Heisenberg spins comes as follo
The Hamiltonian can be written in terms of Schwing
bosons@20#. The Schwinger boson transformation for SU~2!
spins reads

S15a1
†a2 , S25a1a2

† , Sz5 1
2 ~a1

†a12a2
†a2!.

~104!

This can be generalized to SU(N) spins and expand
around the large-N limit @21#. In a path integral formalism
for ferromagnetic interactions

H52
1

2 (
i j

Ji j Si•Sj→2
1

2N (
i j ,mn

Ji j ajm* aimain* ajn ,

~105!

wherei , j represent lattice sites andm,n represent the boso
flavor. The Hilbert space spanned by Schwinger boson
much larger than the one given by Heisenberg spins.
constraint needed to restrict it to the physical Hilbert spac
that the number of Schwinger bosons at each site has t
kept fixed(m

Nnm5NS. This is inserted into the formalism in
the same way as we have done it with the spherical c
straint, a Lagrange multiplierm i(t) appears. The biquadrati
terms can be decoupled by a Hubbard-Stratonovich trans
mation~see, e.g., Ref.@17#!. In the case of a ferromagnet, th
transformation at each time step and for each flavor in
path integral reads

expH 2
e

2N (
i j

Ji j aj* aiai* aj J
}E )

i , j
dQi j expH eN

2 (
i , j

Qi j Ji j Qji

2
e

2 (
i j

Qi j Ji j aj* aiJ , ~106!

where a fieldQi j (t) has been generated. In the mean-fie
approximation, one putsQi j (t)5Q and m i(t)5m. Hence,
one gets up to a non interesting constant

HMF
FM2B~N!5(

i ,m
maim

† aim2Q(
i j ,m

Ji j ajm
† aim1

NQ2

2 (
i j

Ji j

2NNSm, ~107!

where we have already added the Schwinger boson
straint. The free energy per particle reads
05611
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bF5
N
N (

k
ln~12e2b(m2QJ(k)!1

bNQ2

2
J~k50!2bSmN

~108!

and the saddle point equations are

1

N (
k

nk5S ~109!

1

N (
k

J~k!nk5QJ~k50! ~110!

wherenk is the boson occupation number, Eq.~70!, with v
5m2QJ(k). Subtracting the two saddle point equations w
can see that for largeS and smallT we can approximateQ
'S recovering then the spherical model Eqs.~46! and ~47!
for zero external field or Eq.~102! and ~103! for Bi j 50.
From this approach we thus see that the free energy
SU(N) Heisenberg ferromagnet for largeN is formally the
same as the quantum spherical model proposed in Eq.~39! in
the thermodynamic limit, so when the radius of the hyp
sphere that defines the model@N in Eq. ~16!# is also very
large. Thus the largeN limit is somehow analogous to Stan
ley’s large spin dimensionality limit.

In the case of an SU(N ) antiferromagnet the procedure
more or less the same but the symmetries are different.
lattice is divided in two sublatticesA,B. In one of the sub-
lattices a spin rotation is performed that allows us to wr
the Hamiltonian in the form@21#

H5
1

2 (
i j

Ji j Si•Sj→2
1

2N (
i j ,mn

Ji j aim* aim* ajnajn .

~111!

Performing a Hubbard-Stratonovich transformation as
fore, the Hamiltonian with the Schwinger boson constraint
the mean-field approximation finally reads

HMF
AFM2B~N!5(

i ,m
maim

† aim2
Q

2 (
i j ,m

Ji j ~aim
† ajm

† 1aimajm!

1
NQ2

2 (
i j

Ji j 2NNSm. ~112!

It is important to stress that here the SU(N ) symmetry
has been reduced to a residual O(N ). The free energy per
particle reads

bF5
N
N (

k
lnS 2 sinhFb2Am22Q2J2~k!G D2bNS S1

1

2Dm

1
bNQ2

2
J~k50! ~113!

and the saddle point equations read
9-15
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1

N
(

k

m

Am22Q2J2~k!
S nk1

1

2
D 5S1

1

2
~114!

1

N
(

k

J2~k!Q

Am22Q2J2~k!
S nk1

1

2
D 5QJ~k50!, ~115!

where nk is, Eq. ~70!, for v5Am22Q2J2(k). Subtracting
the first equation timesm from the second timesQ we get

1

N (
k

Am22Q2J2~k!S nk2
1

2D5mS S1
1

2D2Q2J~k50!.

~116!

The first term is proportional toT, so for very small tem-
peratures and very largeS, near the transition wherem
'QJ(k50), we can approximateQ'S1 1

2 . Then Eqs.
~113! and ~114! are analogous to Eqs.~102! and ~103! for
Ai j 50. This will have the same critical behavior as t
model in Sec. V due to the fact that it comes from the te
coth@Am2J(k)#/Am2J(k) which also appears here due
the equality 2nk115coth@A(m1QJ(k))(m2QJ(k))#.

VII. CONCLUSION

In this paper we have explained a way of working w
quantum spherical spin models using path integrals and
herent states. Some examples of the use of this formalism
given, Eqs.~39! and ~76!, and their critical phenomena ar
studied. We propose a comparison with SU(N ) Heisenberg
models that gives a geometrical interpretation to the quan
spherical spins. The spherical constraint we use, fixes

number of spin quantaŜ, Eq. ~16!; in other words, it fixes

both the average length square of the spin operator,Ŝ2, and

the one of its conjugate momentum,P̂2. The usual version
of the quantum spherical model, on the contrary, involv

only the spin partŜ. The presence of momenta in the sphe
cal constraint allows the Hamiltonian to have no kine
term, since it can be induced by the constraint, a fact that
change the symmetries of the problem, and due to that,
critical behavior.

The Hamiltonian in Eq.~39! yields an action invarian
under unitary transformations. It brings formally the sam
free energy as a SU(N ) Heisenberg ferromagnet in the lim
of largeN. The other Hamiltonian studied, Eq.~76!, brings
an action invariant under orthogonal transformations; it gi
the same critical behavior as an SU(N ) Heisenberg antifer-
romagnet in the limit of largeN, which is, in its turn, analo-
gous to an O(N ) nonlinears model or quantum rotor mode
@13,19#. The main difference between these models lies
the dynamical critical exponentz which brings a different
behavior at the quantum critical point. Classical critical ph
nomena are, as expected, the same in both models and
to those of the classical spherical model.
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In the formulation of the model, the strict spherical co
straint has been used where fluctuations on the particle n
ber are not allowed. The constraint is added to the action
a Lagrange multiplier. The strict approach has to be ab
doned when we integrate this Lagrange multiplier using
saddle point approximation. In this step, we automatica
allow fluctuations on the particle number and therefore
constraint ends being satisfied only in average. These eff
are immaterial in the considered thermodynamic limit, but
enter finite size corrections.

The analogy of the two Hamiltonians studied here w
Heisenberg models in the large spin dimensionality limit h
a drawback. Both models have different coupling to the
ternal field. In spherical models it comes in linearly, as
source term. No analog has been found for this in the la
spin dimensionality limit of the Heisenberg model whe
each spin contribution brings a bilinear term in Schwing
bosons.

Another approach could have been to start directly fr
the SU(N ) Heisenberg model and to do the already sta
largeN limit to get to a solvable model. In order to have
transversal field that competes with the ordering of the in
acting spins one could introduce anisotropy in the mode
study of this type has been done for two dimensions
Timm et al. @22# in terms of Schwinger bosons and in term
of Holstein-Primakoff bosons by Kaganovet al. @23# for any
dimension. The anisotropy term brings a residual spin sy
metry describing Ising orXY spins. The phase transition de
pends on the type of this residual symmetry; an additio
transversal field decreases the transition temperature tow
zero giving a quantum critical point, result qualitatively r
produced by our model.

In spite of the lack of direct interpretation of the sour
term in the mapping from Heisenberg spins, the phase
gram follows the expected behavior for a spin model with
external transversal field. The critical exponents for the cl
sical and the quantum model are the ones expected by re
malization group arguments. The quantum critical point b
haves as the classical one for dimensionsDquant5dclass1z
wherez is the dynamical critical exponent.

Many other models have a clear analog with this o
Sachdev and Bhatt@24# represented pairs of spins in a squa
lattice with a bond representation; they form either a sing
or a triplet. These elements can be written down in terms
the canonical ‘‘Schwinger boson’’ representation of the ge
erators of SU(2)̂ SU(2)5SO(4). Since a couple of spins
either form a singlet or a triplet, a constraint must be add
s†s1(ata

† ta51, wheres represents the singlet annihilatio
operator, andta represents a triplet annihilation operator
the a direction. Sachdev and Bhatt study using this form
ism systems with interactions up to third nearest neighb
They make the further assumption that the singlet part c
denses and replace thes operator by its mean field valu
^s&5 s̄, and solve the rest for the triplets. The final Ham
tonian is very close to our Eq.~76!, or, better, the generali
zation of our model Eq.~101! with the proper couplings. A
minor difference is the role played by the nonconstant m
value of the singlet part.
9-16
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An interesting line for future research would be to expa
this version of quantum spherical spin models to differ
types of interactions and fields. Randomness is easily ad
in the model. The dynamics could also be studied for
constraint described here. Another line would be to study
this approximation the Heisenberg SU(N ) model for any
dimension with anisotropy in one dimension and transve
field, giving special attention to critical phenomena and co
pare it to the Holstein-Primakoff approximation of Ref.@23#.
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